Fraïssé-like structures

Jan Grebík

Institute of Mathematics of the Czech Academy of Sciences

29.1.2017

Introduction

Let $\mathcal{L} = \{R_1, R_2, ...\}$ be a first order relational language and X a countable structure in \mathcal{L} .

Definition

We say that that X is ultrahomogeneous if for every finite substructures $A, B \leq X$ and every isomorphism $\varphi : A \rightarrow B$ there is an automorphism $\phi : X \rightarrow X$ such that $\phi \upharpoonright A = \varphi$.

Definition Age(X) := $\{A \subseteq X : |A| < \omega\}$

Proposition

If X is ultrahomogeneous then $\mathcal{C} := Age(X)$

- is countable up to isomorphism,
- has the hereditary property (HP),
- has the joint embedding property (JEP),
- has the amalgamation property (AP).

Definition

We say that a countable class of finite structures C that satisfies HP,JEP and AP is a Fraïssé class.

Theorem(Fraïssé)

Let C be a Fraïssé class. Then there is an ultrahomogeneous structure X, called the Fraïssé limit of C (Flim(C)), such that Age(X) = C.

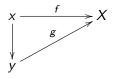
Examples

- C =finite linear orders, $Flim(C) = \mathbb{Q}$,
- ▶ C =finite graphs, Flim(C) =Random graph,
- C =finite rational metric spaces, Flim(C) =rational Urysohn space,

▶ ...

Definition

We say that a structure X satisfies the extension property with respect to $C \subseteq Age(X)$ if for every $x \leq y \in C$ and every $f : x \to X$ there is $g : y \to X$ such that the following diagram



commutes.

Proposition

Let C be a Fraïssé class and X countable structure such that Age(X) = C. Then X = Flim(C) iff X satisfies the extension property with respect to C.

Definition

Let C be a Fraïssé class. We say that a structure X is Fraïssé-like if Age(X) = C and it satisfies the extension property with respect to C.

We are particularly interested in the case when X is a Fraïssé-like structure of cardinality ω_1 . In that case there are embeddings $\{e_i\}_{i < \omega_1}$ such that X is a colimit of a chain

$$\mathsf{Flim}(\mathcal{C}) \xrightarrow{e_0} \mathsf{Flim}(\mathcal{C}) \xrightarrow{e_1} \mathsf{Flim}(\mathcal{C}) \xrightarrow{e_2} \cdots$$

Questions

Are Fraïssé-like structures of cardinality ω_1 uniquely determined? Are they ultrahomogeneous? What can we say about their automorphism groups? To understand how can automorphism groups of Fraïssé-like structures look like we must understand the following.

Definition

To every $e : \operatorname{Flim}(\mathcal{C}) \to \operatorname{Flim}(\mathcal{C})$ we assign $G_e \leq \operatorname{Aut}(\operatorname{Flim}(\mathcal{C}))$ such that $\alpha \in \operatorname{Aut}(\operatorname{Flim}(\mathcal{C}))$ is in G_e iff there is $\beta \in \operatorname{Aut}(\operatorname{Flim}(\mathcal{C}))$ such that the following diagram commutes

$$\begin{array}{c} \mathsf{Flim}(\mathcal{C}) & \xrightarrow{e} & \mathsf{Flim}(\mathcal{C}) \\ & & \uparrow & & \uparrow^{\beta} \\ & & \mathsf{Flim}(\mathcal{C}) & \xrightarrow{e} & \mathsf{Flim}(\mathcal{C}) \end{array}$$

Let $\mathcal G$ be the class of finite graphs. The Fraïssé limit is the Random graph $\mathcal R$.

```
Theorem(Imrich-Klavžar-Trofimov)
```

There is $e: \mathcal{R} \to \mathcal{R}$ such that $|G_e| = 1$.

Theorem

There exists Fraissé-like graphs X_0, X_1 of cardinality ω_1 such that X_0 is ultrahomogeneous and X_1 is rigid.

The same can be proved for the class of finite metric spaces where the Fraïssé limit is the Urysohn space \mathbb{U} .

Grebík J., *A rigid Urysohn-like metric space*, accepted in Proceedings of the AMS.

W. Imrich, S. Klavžar, V. Trofimov, *Distinguishing infinite graphs*, Electron. J. Combin. 14 (2007), no. 1, Research Paper 36, 12 pp.